用Mathematica探索不等式问题一则

 时间:2024-10-13 02:16:07

1、题目是:给定实数a和b,如果a+b=1,求证:(a + 2)^2 + (b + 2)^2 >= 25/2

用Mathematica探索不等式问题一则

2、这里使用机器证明。

用Mathematica探索不等式问题一则

3、反过来考虑,当(a + 2)^2 + (b + 2)^2 <= 25/2时,a+b的值域是多少?Mathematica给出的答案是,a+b最小值是-9,最大值是1。

用Mathematica探索不等式问题一则

4、原问题可以加强为:给定实数a和b,如果a+b>=1或者a+b<=-9,都有:(a + 2)^2 + (b + 2)^2 >= 25/2

用Mathematica探索不等式问题一则

5、当(a + 2)^2 + (b + 2)郏柃妒嘌^2 <= 25/2时,2a+3b的取值范围是:[-(5/2)*(4 + Sqrt[26]),5*(-4 + Sqrt[26])/2]

用Mathematica探索不等式问题一则

6、也就是说,当2a+3b的值在区间(-(5/2)*(4 + Sqrt[26]),5*(-4 + S孥恶膈茯qrt[26])/2)之外的时候,(锾攒揉敫a + 2)^2 + (b + 2)^2 >= 25/2恒成立。

用Mathematica探索不等式问题一则
  • mathematic 求解不等式
  • 【Mathematica入门】图像填充变换
  • 怎么用Mathematica修改gif图片的尺寸?
  • 【Mathematica】双周期函数的等高线图
  • 怎么用Mathematica证明简单的不等式问题?
  • 热门搜索
    如何清理手机内存 o型血和b型血生的孩子是什么血型 芝奇内存怎么样 如何打坐 视频如何旋转 rear是什么意思车上的 mg是什么单位 如何编辑pdf 怎么让下载速度变快 违反禁令标志指示是什么意思