1、对于多重贡献性的判断依赖的主要是方差膨胀因子,在此处我们来简要介绍一下方差膨胀因子。此处,仅简单的理解方差膨胀因子,就是方差膨胀因子构成了变量估计值方差的一部分,如果方差膨胀因子过大,将会导致解释变量的系数方差增大,将会导致检验难以通过。观察下面的两个公式,可以很容易地看出这一点。VIF就是方差膨胀因子。

2、先对模型进行回归sysuse autogen weight2=weight^2reg price rep78 weight2 headroom trunk weight length为什么把函数形式设定成这样可以参考我上一条RESSET的检验

4、reg weight2 weight显然,因为是平方项,回归系数肯定是显著的 R方也是方差大,方差膨胀因子肯定也非常大。

6、使用高级的gen明明,生成标准化变量weightsdegen weightsd=std(weight)reg price rep78 weightsd2 headroom trunk weightsd length进行回归,观察weight 发现p值变为了0,效果十分显著。原来是0.437,图2未标准化的回归结果estat vif发现VIF降低的十分明显,但仍存在多重共线性(我们认定10一下,多重共线性可以忽略),但是已经下降的十分明显。
