Mathematica处理复数问题的基本方法

 时间:2024-10-14 19:49:03

1、平面上,一个向量对应复平面上一个复数,比如,给出向量{a,b},对应的复数就是:x = {a, b};X = x[[1]] + I x[[2]]

Mathematica处理复数问题的基本方法

2、对于给定的复数,可以分别给出实部和虚部:Re[5 + 3 I]Im[5 + 3 I]

Mathematica处理复数问题的基本方法

3、ReIm就是把Re和Im的功能组合起来了:ReIm[5 + 3 I]

Mathematica处理复数问题的基本方法

4、给出一个特定复数的共轭复数:Conjugate[5 + 6 I]

Mathematica处理复数问题的基本方法

5、求复数的模长,用Abs或Norm:Abs[5 + 12 I]Norm[5 + 12 I]

Mathematica处理复数问题的基本方法

6、如果是待定复数,当如何处理呢?比如,求a+b I的实部和虚部、共轭复数、模长:ReIm[a + b 朐袁噙岿I]Conjugate[a + b I]Norm[a + b I]Abs[a + b I]结果,Mathematica把a和b当成复数来对待了。

Mathematica处理复数问题的基本方法

7、如果提前约定a和b都是实数,或许就会好一点:Assuming[(a \[Element] Reals && b \[Element] Reals), ReIm[a + b I]]Assuming[(a \[Element] Reals && b \[Element] Reals),Conjugate[a + b I]]Assuming[(a \[Element] Reals && b \[Element] Reals), Abs[a + b I]]Assuming[(a \[Element] Reals && b \[Element] Reals), Norm[a + b I]]然而没什么用,这是怎么回事?

Mathematica处理复数问题的基本方法

8、网友幞洼踉残BeerRabbit-Math-SH 告诉我,用Refine就可以解决这个问题,这个方法是对的:Refine[ReIm[a + b I], (a \[Element] Reals && b \[Element] Reals)]Refine[Conjugate[a + b I], (a \[Element] Reals && b \[Element] Reals)]Refine[Abs[a + b I], (a \[Element] Reals && b \[Element] Reals)]Refine[Norm[a + b I], (a \[Element] Reals && b \[Element] Reals)]但是要注意,Abs在这里失效了。

Mathematica处理复数问题的基本方法
  • Mathematica 特殊字符输入(希腊字母/运算符)
  • Mathematica基础——循环和迭代
  • 如何使用Mathematica 11计算多项式的普通根?
  • mathematica 如何画图
  • 怎么用Mathematica进行简单的矩阵运算?
  • 热门搜索
    解梦大全2345查询 痣相图解大全 祝福短信大全 居民身份证号码大全 暗黑符文之语大全 男生图片大全 五言绝句大全 2岁宝宝食谱大全及做法 枫叶图片大全 芒硝回奶怎么用