1、函数的定义域,根据函数特征,自变量是二次函数乘积形式,函数自变量可以取全体实数,即定义域为(-∞,+∞)。

2、求出函数的一阶导数,令一阶导数为0,求出函数的驻点,再根据函数的驻点判断导数的符号,即可得函数的单调性,进而得函数的单调区间。

3、求出函数的拐点,再根据拐点判断二阶导数的符号,即可解析函数的凸凹性,进一步即得函数的凸凹区间。

4、函数的极限,判断函数在端点处的极限及函数的极值。

5、函数的奇偶性,根据函数奇偶性判断方法,本经验中可以得到f(-x)=f(x),判断函数为偶函数。

6、函数部分点解析表如下:

7、根据函数的定义域、单调性、凸凹性、极限、奇偶性等性质,函数的示意图如下:
